DESIGN OF JOINTS IN STEEL AND COMPOSITE STRUCTURES

ECCS Eurocode Design Manuals

ECCS EDITORIAL BOARD

Luís Simões da Silva (ECCS) António Lamas (Portugal) Jean-Pierre Jaspart (Belgium) Reidar Bjorhovde (USA) Ulrike Kuhlmann (Germany)

DESIGN OF STEEL STRUCTURES – 2ND EDITION Luís Simões da Silva, Rui Simões and Helena Gervásio

FIRE DESIGN OF STEEL STRUCTURES – 2^{ND} EDITION Jean-Marc Franssen and Paulo Vila Real

DESIGN OF PLATED STRUCTURES Darko Beg, Ulrike Kuhlmann, Laurence Davaine and Benjamin Braun

FATIGUE DESIGN OF STEEL AND COMPOSITE STRUCTURES *Alain Nussbaumer, Luís Borges and Laurence Davaine*

DESIGN OF COLD-FORMED STEEL STRUCTURES Dan Dubina, Viorel Ungureanu and Rafaelle Landolfo

DESIGN OF JOINTS IN STEEL AND COMPOSITE STRUCTURES *Jean-Pierre Jaspart and Klaus Weynand*

DESIGN OF STEEL STRUCTURES FOR BUILDINGS IN SEISMIC AREAS Raffaele Landolfo, Federico Mazzolani, Dan Dubina, Luís Simões da Silva and Mario d'Aniello

AVAILABLE SOON

DESIGN OF COMPOSITE STRUCTURES Markus Feldman and Benno Hoffmeister

ECCS – SCI EUROCODE DESIGN MANUALS

DESIGN OF STEEL STRUCTURES, U. K. EDITION Luís Simões da Silva, Rui Simões, Helena Gervásio and Graham Couchman

INFORMATION AND ORDERING DETAILS

For price, availability, and ordering visit our website <u>www.steelconstruct.com</u>. For more information about books and journals visit <u>www.ernst-und-sohn.de</u>.

DESIGN OF JOINTS IN STEEL AND COMPOSITE STRUCTURES

Eurocode 3: Design of steel structures Part 1-8 – Design of Joints Eurocode 4: Design of composite steel and concrete structures Part 1-1 – General rules and rules for buildings

Jean-Pierre Jaspart Klaus Weynand

Design of Joints in Steel and Composite Structures

2016

Published by: ECCS – European Convention for Constructional Steelwork publications@steelconstruct.com www.steelconstruct.com

Sales:

Wilhelm Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin

All rights reserved. No parts of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ECCS assumes no liability with respect to the use for any application of the material and information contained in this publication.

Copyright © 2016 ECCS – European Convention for Constructional Steelwork

ISBN (ECCS): 978-92-9147-132-4 ISBN (Ernst & Sohn): 978-3-433-02985-5 Legal dep.: Printed in Multicomp Lda, Mem Martins, Portugal Photo cover credits: Klaus Weynand

FOREWORD	XIII
PREFACE	XV
LIST OF SYMBOLS AND ABBREVIATIONS	XIX

RODU	1		
Genera	ıl	1	
1.1.1	Aims of the book	1	
1.1.2	Brief description of the contents of the book	10	
1.1.3	Types of structural systems and joints covered	11	
1.1.4	Basis of design	12	
Definit	tions	12	
1.2.1	Joint properties	14	
1.2.2	Sources of joint deformability	15	
1.2.3	Beam splices and column splices	20	
1.2.4	Beam-to-beam joints	21	
1.2.5	Column bases	22	v
1.2.6	Composite joints	23	
1.2.7	Hollow section joints	24	
Materi	al choice	26	
Fabrica	ation and erection	28	
Costs		29	
Design	approaches	29	
1.6.1	Application of the "static approach"	29	
1.6.2	Component approach	31	
1.6.3	Hybrid connection aspects	38	
Design	tools	39	
1.7.1	Types of design tools	39	
	RODUG Genera 1.1.1 1.1.2 1.1.3 1.1.4 Definit 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 Materi Fabrica Costs Design 1.6.1 1.6.2 1.6.3 Design 1.7.1	General1.1.1Aims of the book1.1.2Brief description of the contents of the book1.1.3Types of structural systems and joints covered1.1.4Basis of designDefinitions1.2.1Joint properties1.2.2Sources of joint deformability1.2.3Beam splices and column splices1.2.4Beam-to-beam joints1.2.5Column bases1.2.6Composite joints1.2.7Hollow section jointsMaterial choiceFabrication and erectionCostsDesign approaches1.6.1Application of the "static approach"1.6.3Hybrid connection aspectsDesign tools1.7.1Types of design tools	RODUCTION1General11.1.1Aims of the book11.1.2Brief description of the contents of the book101.1.3Types of structural systems and joints covered111.1.4Basis of design12Definitions121.2.1Joint properties141.2.2Sources of joint deformability151.2.3Beam splices and column splices201.2.4Beam-to-beam joints211.2.5Column bases221.2.6Composite joints231.2.7Hollow section joints24Material choice26Fabrication and erection28Costs29Design approaches291.6.1Application of the "static approach"291.6.3Hybrid connection aspects38Design tools39391.7.1Types of design tools39

	1.7.2	Examples of design tools	40
1.8	Worke	d examples	44

Chapter 2

vi

STF	RUCTU	RAL ANALYSIS AND DESIGN	47
2.1	Introdu	lction	47
	2.1.1	Elastic or plastic analysis and verification process	48
	2.1.2	First order or second order analysis	49
	2.1.3	Integration of joint response into the frame analysis	
		and design process	51
2.2	Joint n	nodelling	51
	2.2.1	General	51
	2.2.2	Modelling and sources of joint deformability	54
	2.2.3	Simplified modelling according to Eurocode 3	54
	2.2.4	Concentration of the joint deformability	55
2.3	Joint io	dealisation	60
	2.3.1	Elastic idealisation for an elastic analysis	61
	2.3.2	Rigid-plastic idealisation for a rigid-plastic analysis	62
	2.3.3	Non-linear idealisation for an elastic-plastic analysis	63
2.4	Joint c	lassification	63
	2.4.1	General	63
	2.4.2	Classification based on mechanical joint properties	63
2.5	Ductili	ity classes	66
	2.5.1	General concept	66
	2.5.2	Requirements for classes of joints	69
Cha	pter 3		
CO	NNECT	IONS WITH MECHANICAL FASTENERS	71
3.1	Mecha	nical fasteners	71
3.2	Catego	pries of connections	73
	3.2.1	Shear connections	73
	3.2.2	Tension connections	75

3.3	Positioning of bolt holes				
3.4	Design	of the basic components	78		
	3.4.1	Bolts in shear	78		
	3.4.2	Bolts in tension	80		
	3.4.3	Bolts in shear and tension	80		
	3.4.4	Preloaded bolts	81		
	3.4.5	Plates in bearing	89		
	3.4.6	Block tearing	90		
	3.4.7	Injection bolts	91		
	3.4.8	Pins	92		
	3.4.9	Blind bolting	95		
	3.4.10	Nails	97		
	3.4.11	Eccentricity of angles	98		
3.5	Design	of connections	100		
	3.5.1	Bolted lap joints	100		
	3.5.2	Bolted T-stubs	105		
	3.5.3	Gusset plates	117		
	3.5.4	Long joints	121		

WE	WELDED CONNECTIONS 123				
4.1	Туре о	Type of welds			
	4.1.1	Butt welds	123		
	4.1.2	Fillet welds	124		
	4.1.3	Fillet welds all round	126		
	4.1.4	Plug welds	126		
4.2	Constr	uctive constraints	127		
	4.2.1	Mechanical properties of materials	127		
	4.2.2	Welding processes, preparation of welds and weld			
		quality	128		
	4.2.3	Geometry and dimensions of welds	132		
4.3	Design	of welds	135		
	4.3.1	Generalities	135		
	4.3.2	Fillet welds	136		

	4.3.3	Fillet welds all round	140
	4.3.4	Butt welds	140
	4.3.5	Plug welds	142
	4.3.6	Concept of full strength fillet weld	142
4.4	Distrib	ution of forces in a welded joint	145
	4.4.1	Generalities	145
	4.4.2	Particular situations	147

Chapter 5

SIMPLE JOINTS			153	
5.1 Introduction				
5.2	5.2 Steel joints		155	
	5.2.1	Introduction	155	
	5.2.2	Scope and field of application	156	
	5.2.3	Joint modelling for frame analysis and design		
		requirements	159	
	5.2.4	Practical ways to satisfy the ductility and rotation		
		requirements	162	
	5.2.5	Design rules for joint characterisation	174	
5.3	Compo	osite joints	187	
	5.3.1	Composite joints for simple framing	187	
5.4	Colum	n bases	189	
	5.4.1	Introduction	189	
	5.4.2	Basis for the evaluation of the design resistance	190	
	5.4.3	Resistance to axial forces	191	
	5.4.4	Resistance to shear forces	200	

Chapter 6

viii

MO	MOMENT RESISTANT JOINTS		205
6.1	Introduction		
6.2	Component characterisation 6.2.1 Column web papel in shear in steel or composite		206
		joints	206

ix

	6.2.2	Column web in transverse compression in steel or	
		composite joints	208
	6.2.3	Column web in transverse tension	212
	6.2.4	Column flange in transverse bending	213
	6.2.5	End-plate in bending	218
	6.2.6	Flange cleat in bending	221
	6.2.7	Beam or column flange and web in compression	223
	6.2.8	Beam web in tension	225
	6.2.9	Plate in tension or compression	226
	6.2.10	Bolts in tension	227
	6.2.11	Bolts in shear	228
	6.2.12	Bolts in bearing (on beam flange, column flange, end-	
		plate or cleat)	229
	6.2.13	Concrete in compression including grout	230
	6.2.14	Base plate in bending under compression	230
	6.2.15	Base plate in bending under tension	230
	6.2.16	Anchor bolts in tension	231
	6.2.17	Anchor bolts in shear	232
	6.2.18	Anchor bolts in bearing	232
	6.2.19	Welds	232
	6.2.20	Haunched beam	232
	6.2.21	Longitudinal steel reinforcement in tension	233
	6.2.22	Steel contact plate in compression	234
6.3	Assemt	bly for resistance	235
	6.3.1	Joints under bending moments	235
	6.3.2	Joints under axial forces	243
	6.3.3	Joints under bending moments and axial forces	244
	6.3.4	M-N-V	251
	6.3.5	Design of welds	252
6.4	Assemt	oly for rotational stiffness	257
	6.4.1	Joints under bending moments	257
	6.4.2	Joints under bending moments and axial forces	266
6.5	Assemt	bly for ductility	268
	6.5.1	Steel bolted joints	269
	6.5.2	Steel welded joints	271

6.6	Application to steel beam-to-column joint configurations		272
	6.6.1	Extended scope	272
	6.6.2	Possible design simplifications for endplate	
		connections	275
	6.6.3	Worked example	277
6.7	Application to steel column splices		300
	6.7.1	Common splice configurations	300
	6.7.2	Design considerations	302
6.8	Application to column bases		303
	6.8.1	Common column basis configurations	303
	6.8.2	Design considerations	306
6.9	Applic	ation to composite joints	314
	6.9.1	Generalities	314
	6.9.2	Design properties	318
	6.9.3	Assembly procedure under M and N	320

Chapter 7

х

LATTICE GIRDER JOINTS				329
7.1 General7.2 Scope and field of application			al	329
			and field of application	330
	7.3	Design	n models	333
		7.3.1	General	333
		7.3.2	Failure modes	334
		7.3.3	Models for CHS chords	335
		7.3.4	Model for RHS chords	336
		7.3.5	Punching shear failure	338
		7.3.6	Model for brace failure	339
		7.3.7	<i>M-N</i> interaction	339
Chanter 8				

JOIN	NTS UNDER VARIOUS LOADING SITUATIONS	341
8.1	Introduction	341
8.2	Composite joints under sagging moment	342

8.3	Joints in fire	343
8.4	Joints under cyclic loading	344
8.5	Joints under exceptional events	346

DES	SIGN ST	TRATEGIES	349
9.1	Design	opportunities for optimisation of joints and frames	349
	9.1.1	Introduction	349
	9.1.2	Traditional design approach	352
	9.1.3	Consistent design approach	355
	9.1.4	Intermediate design approaches	357
	9.1.5	Economic considerations	358
9.2	Application procedures		364
	9.2.1	Guidelines for design methodology	364
	9.2.2	Use of a good guess for joint stiffness	365
	9.2.3	Required joint stiffness	366
	9.2.4	Use of the fixity factor concept (traditional design	
		approach)	369
	9.2.5	Design of non-sway frames with rigid-plastic global	
		frame analysis	370
BIB	LIOGR	APHIC REFERENCES	375
Ann	ex A	Practical values for required rotation capacity	385
Ann	ex B	Values for lateral torsional buckling strength of a fin pl	late 387

FOREWORD

With this ECCS book "Joints in Steel and Composite Structures" the authors succeeded in placing the joints on the rightful place they deserve in the structural behaviour of steel and composite steel-concrete structures. The many times used word "details" for the joints in structures by far underestimates the importance of joints in the structural behaviour of buildings and civil engineering structures. In their chapter "Aim of the book" the authors clearly explain how the design and safety verification of structures runs in an integral manner where all structural components, including the joints, play balanced roles leading to economic structures.

This book can be seen as a background document for Eurocode 3 "Design of Steel Structures" and for Eurocode 4 "Design of Composite Steel and Concrete Structures" as far as it concerns structural joints. The central theme in describing the behaviour of joints is using the component method and this is leading all over in this book. The book contain many aspects such as design, fabrication, erection and costs.

In this book attention is paid on joint modelling and idealisation, joint classification for strength and stiffness and deformation capacity. This all for connections with mechanical fasteners and for welded connections, for simple joints and moment resistant joints. Also lattice girder joints are described.

xiii

The book provides the designer with design strategies to arrive at economic structures.

The authors based themselves on many bibliographic references covering a time span of about 65 years. Many of these references present research of the authors themselves and of the other members of the ECCS-Technical Committee TC10 "Structural Connections".

It was really a privilege to have been the chairperson of this committee from 1998 till the end of 2012 and I thank the authors Prof. Dr. Ir. Jean-Pierre Jaspart and Dr.-Ing. Klaus Weynand for their large effort in writing this book.

Prof. ir. Frans Bijlaard

PREFACE

Steel constructions and composite steel-concrete constructions are generally erected on site by the assembly of prefabricated structural parts prepared at workshop. These parts may themselves be the result of an assembly of individual elements. An example is the assembly by bolting on site of builtup sections welded in the workshop.

In these construction types, joints and connections play a key role and recommendations and guidelines are required for engineers and constructors faced to the conception and design, the fabrication and the erection of such structures. In the Structural Eurocodes, all these aspects are mainly covered in the execution standard EN 1090-2 and in the design standards EN 1993-1-8 (Eurocode 3 for steel structures) and EN 1994-1-1 (Eurocode 4 for composite structures).

In the present book which is part of the series of ECCS Eurocode Design Manuals, the main focus is given to design aspects, but references are also made to EN 1090-2 when necessary.

In comparison to some other fields, the design procedures for joints and connections have significantly evolved in the last decades as a result of the progressive awareness by practitioners of the significant contribution of joints and connections to the global cost of structures. Design for low fabrication and erection costs and high resistance is therefore the targeted objective of modern design codes, the achievement of which has justified the development of new calculation approaches presently integrated into the two afore-mentioned Eurocodes. This situation justifies the writing of the present manual with the main goal to demystify the design by explaining the new concepts to design the joints and to integrate their mechanical response into the structural frame analysis and design process, by providing "keys" for a proper application in practice and finally by providing well documented worked examples.

To refer to "modern" or "new" design approaches and philosophies does not mean that traditional ways are old-fashioned or no more valid. It XV

PREFACE

should be understood that the design methods recommended in the Eurocodes are a collection of European practices including the results of intensive research efforts carried out in the last decades and so give many options and alternatives to the engineers to elaborate safe and economic solutions.

Chapter 1 introduces generalities about joint properties, aspects of materials, fabrication, erection and costs, design approach - and especially the so-called component method - and design tools available to practitioners for easier code application. The integration of the response of the joints into the structural analysis and design process is addressed in chapter 2. In chapter 3, the attention is paid to the design of common connections with mechanical fasteners. Preloaded bolts and non-preloaded bolts are mainly considered but the use of some less classical connectors is also briefly described. Welded connections are covered in chapter 5.

The three next chapters relate to three specific types of joints, respectively simple joints, moment resisting joints and lattice girder joints. For these ones, substantial novelties are brought in the Eurocodes in comparison to traditional national codes; and more especially for simple and moment resisting joints. A significant number of pages is therefore devoted to these topics in this manual.

The design of joints under static loading, as it is addressed in the seven first chapters, is essential in all cases but further checks or different conceptual design of the joints are often required in case of load reversal, fire, earthquake or even exceptional events like impact or explosion. Chapter 8 summarises present knowledge in this field.

Traditionally joints were designed as rigid or pinned, what enabled – and still enables – a sort of dichotomy between the design of the frame, on the one hand, and the design of the joints, on the other hand. The clear economical advantage associated in many situations to the use of semi-rigid and/or partial-strength joints leads however to "structure-joints" interactions that have to be mastered by the engineer so as to fully profit from the beneficial generated cost effects. The Eurocodes do not at all cover this aspect which is not falling within the normalisation domain but within the application by engineers and constructors in daily practice. From this point of view, chapter 9 may be considered as "a première" even if the content had already been somewhat described years ago in an ECSC publication.

xvi

PREFACE

Before letting the reader discover the contents of this book, we would like to express acknowledgment. We are very grateful to Prof. Frans Bijlaard for all the comments, suggestions and corrections he made through the review process of the present manual. Warm thanks are also addressed to José Fuchs and Sönke Müller who helped us in preparing the drawings. Last but not least we would like to thank our wives for their patience when we worked "on our project" during innumerable evenings and week-ends.

Jean-Pierre Jaspart Klaus Weynand

xvii

SYMBOLS

$b_{_{eff}}$	effective width	
<i>d</i> ,"	nominal diameter of the bolt shank	
e	magnitude of initial out-of-straightness	
g	gap (in a lattice girder gap joint)	
f_u	material ultimate tensile strength	
f_{y}	material yield strength	
h _b	depth of beam cross section	
h_{c}	depth of column cross section	
h _r	the distance from bolt-row r to the centre of compression	
h_t	distance between the centroids of the beam flanges	
k _{eq}	equivalent stiffness coefficient	
k_i	stiffness coefficient of component <i>i</i>	
l _{eff}	effective length (of a T stub flange)	
$m_{_{pl,Rd}}$	design plastic moment of a plate per unit length	
r_{c}	fillet radius of the structural shape used as column	
$t_{f,b}$	thickness of the beam flange	
$t_{f,c}$	thickness of the column flange	xix
t_p	thickness of the end-plate	
$t_{w,c}$	thickness of the column web	
t_0	thickness of the chord	
t _i	thickness of the braces $i = 1.2$	
Ζ	lever arm of the resultant tensile and compressive forces in the	
	connection	
Z _{eq}	equivalent lever arm	
XX	longitudinal axis of a member	
уу	major axis of a cross section	
ZZ	minor axis of a cross section	
$A_{_o}$	original cross sectional area	
A_{s}	shear area of the bolt shank	
$A_{_{v,c}}$	shear area of the column web	

E	Young modulus for steel material			
F_{b}	tensile and compressive forces in the connection, statically			
	equivalent to the beam end moment			
$F_{\!$	design bearing force (bolt hole)			
$F_{c,Ed}$	design compressive force			
$F_{c,fb,Rd}$	design compression resistance of a beam flange and the adjacent			
	compression zone of the beam web			
$F_{c,wc,Rd}$	design resistance of a column web subject to transverse			
_	compression			
$F_{t,Rd}$	design tension resistance per bolt			
$F_{t,r,Rd}$	design tension resistance per bolt <i>r</i>			
$F_{T,Rd}$	design tension resistance of a T-stub flange			
$F_{t,wc,Rd}$	design resistance of a column web subject to transverse tension			
$F_{t,wb,Rd}$	design tension resistance of the beam web			
$F_{t,Ed}$	design tensile force			
$F_{v,Ed}$	design shear force (bolts)			
$F_{v,Rd}$	the design shear resistance per bolt			
$F_{wp,Rd}$	plastic shear resistance of a column web panel			
H	horizontal load			
I T	second moment of area			
	second moment of area of the beam section (major axis bending)			
I_c	second moment of area in the column section (major axis			
т	member longth			
	heam span (system length)			
L _b I	column height (system length measured between two consecutive			
<i>^L</i> _с	storevs)			
М	hending moment			
M	bending moment at the beam end (at the location of the joint)			
M	bending moment in the column (at the location of the joint)			
$M_{\rm exp}^{c}$	design moment resistance of a joint			
M_{iEd}	design bending moment experienced by the joint			
M_{i}	ultimate bending moment resistance of the joint			
$M_{pl Rd}^{J,u}$	design plastic moment resistant of a cross section			
M_{μ}	ultimate bending moment			
$M_{_{Fd}}$	design bending moment			
1.0				

XX

Ν	axial force	
N_{b}	axial force in the beam (at the location of the joint)	
N	axial force in the column (at the location of the joint)	
N_{iRd}	axial design resistance of the joint	
Q	prying force	
Р	axial compressive load	
R_{k}	characteristic value of resistance	
S	rotational joint stiffness	
S_{i}	nominal rotational joint stiffness	
$\vec{S}_{i,app}$	approximate rotational joint stiffness (estimate of the initial one)	
$S_{i,ini}^{j,-r}$	initial rotational joint stiffness	
$S_{i,post-limit}$	post-limit rotational joint stiffness	
V	shear force or gravity load	
$V_{_{b}}$	shear force at the beam end	
V_{c}	shear force in the column	
V_{cr}	critical value of the resultant gravity load	
$V_{_{Ed}}$	design shear force in the connection	
V_n	shear force experienced by the column web panel	
$V_{_{wp,Rd}}$	design plastic shear resistance of a web panel	
W	gravity load	
β	transformation parameter	
\mathcal{E}_{y}	material yield strain	
\mathcal{E}_{u}	material ultimate strain	vvi
δ	magnitude of the member deflection or local second-order effect	771
ϕ	the rotation of a joint (relative rotation between the axis of the	
	connected members or sum of the rotations at the beam ends)	
$\phi_{_{cd}}$	design rotation capacity of a joint	
$\phi_{_{b}}$	rotation of the beam end	
ϕ_t	rotation of the (beam + joint) end	
γ	shear deformation	
$\gamma_{_F}$	partial safety factor for the loads (actions)	
$\gamma_{_M}$	partial safety factor for the resistance (strength function)	
η	stiffness reduction factor $(S_j/S_{j,ini})$	
λ	slenderness	
$\lambda_{_L}$	load parameter	
λ_{cr}	elastic critical load parameter (gravity loads)	

λ_{p}	plastic load parameter
$\overline{\lambda}$	reduced slenderness
θ_{b}	absolute rotation of the beam end
θ_{c}	absolute rotation of the column axis
$\sigma_{_{u}}$	average ultimate stress
$\sigma_{_{com,Ed}}$	maximum longitudinal compressive stress in a column due to
	axial force and bending
Ψ	load combination factor
$\gamma_{_{M0}}$	partial safety factor for plastic resistance of members or sections
$\gamma_{_{M1}}$	partial safety factor for resistance to instability
$\gamma_{_{M2}}$	partial safety factor for resistance of cross sections in tension to
	fracture or bolts or welds
Δ	sway displacement or global second-order effect

ABBREVIATIONS

SLS	Service	limit	state(s)

- ULS Ultimate limit state(s)
- RHS rectangular hollow section
- CHS circular hollow section

xxii